
RUN-TIME ATTACK DETECTION IN
CRYPTOGRAPHIC APIS

Marco Squarcina1, joint work with Riccardo Focardi1

August 23, 2017
1Università Ca’ Foscari Venezia (IT) / Cryptosense (FR)

30th IEEE Computer Security Foundations Symposium (CSF2017)
Santa Barbara (CA), USA

OUTLINE

• Background
• Run-time monitor
• Model
• Analysis
• Implementation
• Conclusions

1

Background

CRYPTOGRAPHIC API

2

CRYPTOGRAPHIC API

2

CRYPTOGRAPHIC API

2

KEY MANAGEMENT

Host Machine Trusted Device

3

KEY MANAGEMENT

Host Machine Trusted Device

wrap
E ()

3

KEY MANAGEMENT

Host Machine Trusted Device

wrap
E ()

unwrap
E ()

3

KEY MANAGEMENT

Host Machine Trusted Device

wrap
E ()

unwrap
E ()

3

WRAP/DECRYPT ATTACK [Clu03]

Host Machine Trusted Device

4

WRAP/DECRYPT ATTACK [Clu03]

Host Machine Trusted Device

genkey

4

WRAP/DECRYPT ATTACK [Clu03]

Host Machine Trusted Device

wrap
E ()
genkey

4

WRAP/DECRYPT ATTACK [Clu03]

Host Machine Trusted Device

wrap
E ()

decrypt
E ()

genkey

4

WRAP/DECRYPT ATTACK [Clu03]

Host Machine Trusted Device

wrap
E ()

decrypt
E ()

genkey

4

SOLUTIONS

Possible solutions

• New cryptographic API [CS09]
• Modiications to current standards [BCFS10]
• Reduction of functionalities

Dificult to deploy in practice

• Systems are rarely modiied
• Legacy applications
• Key management functionalities required

5

SOLUTIONS

Possible solutions

• New cryptographic API [CS09]
• Modiications to current standards [BCFS10]
• Reduction of functionalities

Dificult to deploy in practice

• Systems are rarely modiied
• Legacy applications
• Key management functionalities required

5

Run-time monitor

A NEW APPROACH

Our proposal

• Collect API invocation sequence for various devices
• Analyse log to detect any leakage of sensitive keys

Goals

• Secure
• Accurate
• Distributed
• Eficient

6

A NEW APPROACH

Our proposal

• Collect API invocation sequence for various devices
• Analyse log to detect any leakage of sensitive keys

Goals

• Secure
• Accurate
• Distributed
• Eficient

6

Model

CORE MODEL

Generalisation of the DKS [DKS10] model

• No PKCS#11 speciic features (attributes)
• States represent user’s knowledge
• Labels on transitions (actions) to capture API calls

Wrap/Decrypt Attack

q0 = {hk1 ,hk2}

q0
Wrap(hk1 , hk2)−−−−−−−−→→ q1 q1 = q0 ∪ {Ek1(k2)}

q1
Decrypt(hk1 , Ek1 (k2))−−−−−−−−−−−−→→ q2 q2 = q1 ∪ {k2}

7

SECURE LOCAL EXECUTION

Dolev-Yao [DY83] model for attacker’s deduction capabilities

• Given a set of sensitive keys SK we want to monitor
• Attacker can enc/dec using known keys and keys /∈ SK
• Executions can include attacker’s actions

Deinition (SK-Secure Execution)
An execution is secure iff does not leak any of its secure key

q0 qn is SK-secure SK qn

8

SECURE LOCAL EXECUTION

Dolev-Yao [DY83] model for attacker’s deduction capabilities

• Given a set of sensitive keys SK we want to monitor
• Attacker can enc/dec using known keys and keys /∈ SK
• Executions can include attacker’s actions

Deinition (SK-Secure Execution)
An execution σ is secure iff does not leak any of its secure key

σ = q0
α
−→→∗ qn is SK-secure ⇐⇒ SK ∩ qn = ∅

8

SECURE EXECUTION

Proposition (characterization of insecure executions)
An execution σ is SK-secure iff none of the following is in σ

• Wrap of a sensitive key under a key not in SK
• Decrypt of a sensitive key encrypted under a sensitive key

Implications

• Only Wrap and Decrypt API calls must be monitored
• Soundness no false attacks detected
• Completeness all attacks are spotted

9

SECURE EXECUTION

Proposition (characterization of insecure executions)
An execution σ is SK-secure iff none of the following is in σ

• Wrap of a sensitive key under a key not in SK
• Decrypt of a sensitive key encrypted under a sensitive key

Implications

• Only Wrap and Decrypt API calls must be monitored
• Soundness→ no false attacks detected
• Completeness→ all attacks are spotted

9

SECURE DISTRIBUTED EXECUTION

Deinition (Secure Distributed Executions)
S = {(SK1, σ1), . . . , (SKn, σn)} is a set of distinct executions
with their respective sets of sensitive keys.
Let SK =

⋃
i=1,...,n SK i.

S is secure ⇐⇒ σ1, . . . , σn are SK-secure

Distributed Wrap/Decrypt Attack

q0
Wrap hk1 hk2 q1 q1 hk1 hk2 Ek1 k2

q0
Decrypt hk1 Ek1 k2 q1 q1 hk1 Ek1 k2 k2

is k1 k2 -secure, is k1 -secure but not k1 k2 -secure!

10

SECURE DISTRIBUTED EXECUTION

Deinition (Secure Distributed Executions)
S = {(SK1, σ1), . . . , (SKn, σn)} is a set of distinct executions
with their respective sets of sensitive keys.
Let SK =

⋃
i=1,...,n SK i.

S is secure ⇐⇒ σ1, . . . , σn are SK-secure

Distributed Wrap/Decrypt Attack

σ = q0
Wrap(hk1 , hk2)−−−−−−−−→→ q1 q1 = {hk1 ,hk2} ∪ {Ek1(k2)}

σ′ = q′0
Decrypt(hk1 , Ek1 (k2))−−−−−−−−−−−−→→ q′1 q′1 = {hk1 , Ek1(k2)} ∪ {k2}

σ is {k1, k2}-secure, σ′ is {k1}-secure but not {k1, k2}-secure!
10

Analysis

LOG ANALYSIS PROBLEM

Distributed Wrap/Decrypt Attack (Partial Execution)

σ = q0 q0 = {hk1 ,hk2}

σ′ = q′0
Decrypt(hk1 , Ek1 (k?))−−−−−−−−−−−−→→ q′1 q′1 = {hk1 , Ek1(k?)} ∪ {k?}

k k2 is leaked but cannot be linked to one of the handles!

Key Fingerprint

• Terms can only be compared by syntactic equality
• Enrich logs with a special one-way deterministic function

• hy
KeyFprint kf y , y kf y , y y kf y kf y

11

LOG ANALYSIS PROBLEM

Distributed Wrap/Decrypt Attack (Partial Execution)

σ = q0 q0 = {hk1 ,hk2}

σ′ = q′0
Decrypt(hk1 , Ek1 (k?))−−−−−−−−−−−−→→ q′1 q′1 = {hk1 , Ek1(k?)} ∪ {k?}

k? = k2 is leaked but cannot be linked to one of the handles!

Key Fingerprint

• Terms can only be compared by syntactic equality
• Enrich logs with a special one-way deterministic function

• hy
KeyFprint kf y , y kf y , y y kf y kf y

11

LOG ANALYSIS PROBLEM

Distributed Wrap/Decrypt Attack (Partial Execution)

σ = q0 q0 = {hk1 ,hk2}

σ′ = q′0
Decrypt(hk1 , Ek1 (k?))−−−−−−−−−−−−→→ q′1 q′1 = {hk1 , Ek1(k?)} ∪ {k?}

k? = k2 is leaked but cannot be linked to one of the handles!

Key Fingerprint

• Terms can only be compared by syntactic equality
• Enrich logs with a special one-way deterministic function

• hy
KeyFprint
−−−−−→ kf(y), y′ → kf(y′), y = y′ ⇐⇒ kf(y) = kf(y′)

11

LOG ANALYSIS USING KEY FINGERPRINTING

Given logs and handles of sensitive keys:

1. Collect all the ingerprints of sensitive keys
2. For each wrap call

• if a sensitive key is wrapped under an insecure one→

ATTACK
3. For each decrypt call

• if the decryption key is sensitive
• compute the ingerprint of the result and compare it
against the set of ingerprints collected at step 1

• if a match is found→ ATTACK

12

Implementation

LOG ANALYSIS TOOL FOR PKCS#11

The tool is able to detect all the key-management attacks
found in the literature [DKS10, FLS10] involving symmetric
encryption operations

13

LOG ANALYSIS TOOL FOR PKCS#11

Instrumented API functions

• C_WrapKey
• C_Decrypt
• C_GetAttributeValue
• C_GenerateKey
• C_Login

Possible ingerprints for a key depending on its attributes

• encrypt kf k E r Ek r
• decrypt kf k D r Dk r
• wrap kf k W Ek k

14

LOG ANALYSIS TOOL FOR PKCS#11

Instrumented API functions

• C_WrapKey
• C_Decrypt
• C_GetAttributeValue
• C_GenerateKey
• C_Login

Possible ingerprints for a key depending on its attributes

• encrypt→ kf(k)E = 〈r, Ek(r)〉
• decrypt→ kf(k)D = 〈r,Dk(r)〉
• wrap→ kf(k)W = 〈Ek(k)〉

14

Conclusions

CONTRIBUTIONS

• Provided a model for distributed run-time detection of
crypto APIs attacks

• Devised a sound and complete characterization of attacks
• Proved that the problem of ofline attack detection is
unsolvable

• …but key ingerprinting mechanism enables feasible and
eficient analysis

• Developed a proof-of-concept log analysis tool for PKCS#11

15

FUTURE WORKS

• Reason about practical implementations of key ingerprint
• Cover a more extensive fragment of PKCS#11 with the tool
and implement a key ingerprint call the API using
software emulators

• Characterize other crypto APIs and study formally which
are the problematic rules that should be tracked in the
logs

• Formally devise a logging policy to prevent logs to grow
indeinitely

16

REFERENCES

[BCFS10] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. Attacking and ixing PKCS#11 security tokens. In
Proceedings of the 17th ACM Conference on Computer and Communications Security (CCS’10), pages
260–269, Chicago, Illinois, USA, October 2010. ACM Press.

[Clu03] J. Clulow. On the security of PKCS#11. In Proceedings of the 5th International Workshop on Cryptographic
Hardware and Embedded Systems (CHES’03), volume 2779 of LNCS, pages 411–425. Springer, 2003.

[CS09] V. Cortier and G. Steel. A generic security API for symmetric key management on cryptographic devices.
In Michael Backes and Peng Ning, editors, Proceedings of the 14th European Symposium on Research in
Computer Security (ESORICS’09), volume 5789 of Lecture Notes in Computer Science, pages 605–620,
Saint Malo, France, September 2009. Springer.

[DKS10] S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11 and proprietary extensions. Journal of
Computer Security, 18(6):1211–1245, November 2010.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions in Information Theory,
2(29):198–208, March 1983.

[FLS10] R. Focardi, F.L. Luccio, and G. Steel. An introduction to security api analysis. In FOSAD, pages 35–65, 2010.

Thank you!

16

Questions?

16

Bonus Slides

LOG ANALYSIS USING KEY FINGERPRINTING

Algorithm 1 Log Analysis using Key Fingerprinting
1: procedure LogAnalysis(σ̄,H)
2: FSK = []

3: for (a, ret) ∈ σ̄ do
4: if a == KeyFprint(h) and h ∈ H then
5: FSK ← FSK + [ret]
6: end if
7: end for
8: for (a, ret) ∈ σ̄ do
9: if a == Wrap∗(h1, h2) and h1 6∈ H and h2 ∈ H then
10: return a
11: end if
12: if a == Decrypt∗(h, t) and h ∈ H and kf(ret) ∈ FSK then
13: return a
14: end if
15: end for
16: return None
17: end procedure

API RULES
KeyGen
−−−−−→
new n, k

hk
KeyPairGen
−−−−−−→
new n, s

hpriv(s), pub(s)

hy1 , hy2
Wrap
−−−→ Ey1 (y2)

hpriv(z), hy2
Wrapsa
−−−−→ aenc(y2, pub(z))

hy1 , hpriv(z)
Wrapas
−−−−→ Ey1 (priv(z))

hy2 , Ey2 (y1)
Unwrap
−−−−→
new n1

hy1

hpriv(z), aenc(y1, pub(z))
Unwrapsa
−−−−−→
new n1

hy1

hy2 , Ey2 (priv(z))
Unwrapas
−−−−−→
new n1

hpriv(z)

hy1 , y2
Encrypt
−−−−→ Ey1 (y2)

hy1 , Ey1 (y2)
Decrypt
−−−−→ y2

hpriv(z), y1
Encrypta
−−−−−→ aenc(y1, pub(z))

hpriv(z), aenc(y2, pub(z))
Decrypta
−−−−−→ y2

	Background
	Run-time monitor
	Model
	Analysis
	Implementation
	Conclusions
	Appendix
	Bonus Slides

