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KEY MANAGEMENT

Host Machine Trusted Device
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WRAP/DECRYPT ATTACK [Clu03]
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SOLUTIONS

Possible solutions

• New cryptographic API [CS09]
• Modiications to current standards [BCFS10]
• Reduction of functionalities

Dificult to deploy in practice

• Systems are rarely modiied
• Legacy applications
• Key management functionalities required
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Run-time monitor



A NEW APPROACH

Our proposal

• Collect API invocation sequence for various devices
• Analyse log to detect any leakage of sensitive keys

Goals

• Secure
• Accurate
• Distributed
• Eficient

6



A NEW APPROACH

Our proposal

• Collect API invocation sequence for various devices
• Analyse log to detect any leakage of sensitive keys

Goals

• Secure
• Accurate
• Distributed
• Eficient

6



Model



CORE MODEL

Generalisation of the DKS [DKS10] model

• No PKCS#11 speciic features (attributes)
• States represent user’s knowledge
• Labels on transitions (actions) to capture API calls

Wrap/Decrypt Attack

q0 = {hk1 ,hk2}

q0
Wrap(hk1 , hk2 )−−−−−−−−→→ q1 q1 = q0 ∪ {Ek1(k2)}

q1
Decrypt(hk1 , Ek1 (k2))−−−−−−−−−−−−→→ q2 q2 = q1 ∪ {k2}
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SECURE LOCAL EXECUTION

Dolev-Yao [DY83] model for attacker’s deduction capabilities

• Given a set of sensitive keys SK we want to monitor
• Attacker can enc/dec using known keys and keys /∈ SK
• Executions can include attacker’s actions

Deinition (SK-Secure Execution)
An execution is secure iff does not leak any of its secure key

q0 qn is SK-secure SK qn

8



SECURE LOCAL EXECUTION

Dolev-Yao [DY83] model for attacker’s deduction capabilities

• Given a set of sensitive keys SK we want to monitor
• Attacker can enc/dec using known keys and keys /∈ SK
• Executions can include attacker’s actions

Deinition (SK-Secure Execution)
An execution σ is secure iff does not leak any of its secure key

σ = q0
α
−→→∗ qn is SK-secure ⇐⇒ SK ∩ qn = ∅
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SECURE EXECUTION

Proposition (characterization of insecure executions)
An execution σ is SK-secure iff none of the following is in σ

• Wrap of a sensitive key under a key not in SK
• Decrypt of a sensitive key encrypted under a sensitive key

Implications

• Only Wrap and Decrypt API calls must be monitored
• Soundness no false attacks detected
• Completeness all attacks are spotted
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SECURE DISTRIBUTED EXECUTION

Deinition (Secure Distributed Executions)
S = {(SK1, σ1), . . . , (SKn, σn)} is a set of distinct executions
with their respective sets of sensitive keys.
Let SK =

⋃
i=1,...,n SK i.

S is secure ⇐⇒ σ1, . . . , σn are SK-secure

Distributed Wrap/Decrypt Attack

q0
Wrap hk1 hk2 q1 q1 hk1 hk2 Ek1 k2

q0
Decrypt hk1 Ek1 k2 q1 q1 hk1 Ek1 k2 k2

is k1 k2 -secure, is k1 -secure but not k1 k2 -secure!
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Deinition (Secure Distributed Executions)
S = {(SK1, σ1), . . . , (SKn, σn)} is a set of distinct executions
with their respective sets of sensitive keys.
Let SK =

⋃
i=1,...,n SK i.

S is secure ⇐⇒ σ1, . . . , σn are SK-secure

Distributed Wrap/Decrypt Attack

σ = q0
Wrap(hk1 , hk2 )−−−−−−−−→→ q1 q1 = {hk1 ,hk2} ∪ {Ek1(k2)}

σ′ = q′0
Decrypt(hk1 , Ek1 (k2))−−−−−−−−−−−−→→ q′1 q′1 = {hk1 , Ek1(k2)} ∪ {k2}

σ is {k1, k2}-secure, σ′ is {k1}-secure but not {k1, k2}-secure!
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Analysis



LOG ANALYSIS PROBLEM

Distributed Wrap/Decrypt Attack (Partial Execution)

σ = q0 q0 = {hk1 ,hk2}

σ′ = q′0
Decrypt(hk1 , Ek1 (k?))−−−−−−−−−−−−→→ q′1 q′1 = {hk1 , Ek1(k?)} ∪ {k?}

k k2 is leaked but cannot be linked to one of the handles!

Key Fingerprint

• Terms can only be compared by syntactic equality
• Enrich logs with a special one-way deterministic function

• hy
KeyFprint kf y , y kf y , y y kf y kf y
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σ′ = q′0
Decrypt(hk1 , Ek1 (k?))−−−−−−−−−−−−→→ q′1 q′1 = {hk1 , Ek1(k?)} ∪ {k?}

k? = k2 is leaked but cannot be linked to one of the handles!

Key Fingerprint

• Terms can only be compared by syntactic equality
• Enrich logs with a special one-way deterministic function

• hy
KeyFprint
−−−−−→ kf(y), y′ → kf(y′), y = y′ ⇐⇒ kf(y) = kf(y′)
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LOG ANALYSIS USING KEY FINGERPRINTING

Given logs and handles of sensitive keys:

1. Collect all the ingerprints of sensitive keys
2. For each wrap call

• if a sensitive key is wrapped under an insecure one→

ATTACK
3. For each decrypt call

• if the decryption key is sensitive
• compute the ingerprint of the result and compare it
against the set of ingerprints collected at step 1

• if a match is found→ ATTACK
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Implementation



LOG ANALYSIS TOOL FOR PKCS#11

The tool is able to detect all the key-management attacks
found in the literature [DKS10, FLS10] involving symmetric
encryption operations
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LOG ANALYSIS TOOL FOR PKCS#11

Instrumented API functions

• C_WrapKey
• C_Decrypt
• C_GetAttributeValue
• C_GenerateKey
• C_Login

Possible ingerprints for a key depending on its attributes

• encrypt kf k E r Ek r
• decrypt kf k D r Dk r
• wrap kf k W Ek k
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LOG ANALYSIS TOOL FOR PKCS#11

Instrumented API functions

• C_WrapKey
• C_Decrypt
• C_GetAttributeValue
• C_GenerateKey
• C_Login

Possible ingerprints for a key depending on its attributes

• encrypt→ kf(k)E = 〈r, Ek(r)〉
• decrypt→ kf(k)D = 〈r,Dk(r)〉
• wrap→ kf(k)W = 〈Ek(k)〉

14



Conclusions



CONTRIBUTIONS

• Provided a model for distributed run-time detection of
crypto APIs attacks

• Devised a sound and complete characterization of attacks
• Proved that the problem of ofline attack detection is
unsolvable

• …but key ingerprinting mechanism enables feasible and
eficient analysis

• Developed a proof-of-concept log analysis tool for PKCS#11
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FUTURE WORKS

• Reason about practical implementations of key ingerprint
• Cover a more extensive fragment of PKCS#11 with the tool
and implement a key ingerprint call the API using
software emulators

• Characterize other crypto APIs and study formally which
are the problematic rules that should be tracked in the
logs

• Formally devise a logging policy to prevent logs to grow
indeinitely
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Thank you!
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Questions?
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LOG ANALYSIS USING KEY FINGERPRINTING

Algorithm 1 Log Analysis using Key Fingerprinting
1: procedure LogAnalysis(σ̄,H)
2: FSK = [ ]

3: for (a, ret) ∈ σ̄ do
4: if a == KeyFprint(h) and h ∈ H then
5: FSK ← FSK + [ret]
6: end if
7: end for
8: for (a, ret) ∈ σ̄ do
9: if a == Wrap∗(h1, h2) and h1 6∈ H and h2 ∈ H then
10: return a
11: end if
12: if a == Decrypt∗(h, t) and h ∈ H and kf(ret) ∈ FSK then
13: return a
14: end if
15: end for
16: return None
17: end procedure



API RULES
KeyGen
−−−−−→
new n, k

hk
KeyPairGen
−−−−−−→
new n, s

hpriv(s), pub(s)

hy1 , hy2
Wrap
−−−→ Ey1 (y2)

hpriv(z), hy2
Wrapsa
−−−−→ aenc(y2, pub(z))

hy1 , hpriv(z)
Wrapas
−−−−→ Ey1 (priv(z))

hy2 , Ey2 (y1)
Unwrap
−−−−→
new n1

hy1

hpriv(z), aenc(y1, pub(z))
Unwrapsa
−−−−−→
new n1

hy1

hy2 , Ey2 (priv(z))
Unwrapas
−−−−−→
new n1

hpriv(z)

hy1 , y2
Encrypt
−−−−→ Ey1 (y2)

hy1 , Ey1 (y2)
Decrypt
−−−−→ y2

hpriv(z), y1
Encrypta
−−−−−→ aenc(y1, pub(z))

hpriv(z), aenc(y2, pub(z))
Decrypta
−−−−−→ y2
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