
Mind Your Keys?
A Security Evaluation of Java
Keystores
Marco Squarcina (Università Ca’ Foscari & Cryptosense)

Riccardo Focardi
Università Ca’ Foscari

Cryptosense

Francesco Palmarini
Università Ca’ Foscari

Yarix

Graham Steel
Cryptosense

Mauro Tempesta
Università Ca’ Foscari

BACKGROUND
MOTIVATIONS

PKCS#11

HW Solutions

● HSM
● Smartcards

Key Storage

Key Storage Keystore

● File containing crypto keys
and certificates

● Content is secured by a
password

Key Storage Keystore

● File containing crypto keys
and certificates

● Content is secured by a
password

Key Confidentiality

Key Integrity

System Integrity

Password-based Key Derivation

Password:

192b 3DES keyKDF(pwd,salt,ic)

SHA1

160b

● Ciphers require a key of a specific length
● Produce a key which can be used as a cryptographic key for a given

cipher (e.g. 3DES)

10K

Password-based Key Derivation

Password:

192b 3DES keyKDF(pwd,salt,ic)

SHA1

160b

● Ciphers require a key of a specific length
● Produce a key which can be used as a cryptographic key for a given

cipher (e.g. 3DES)

AVOID
PRECOMPUTATION

PREVENT
BRUTEFORCE

10K

Keystore Types

Oracle JRE/JDK

● JKS
● JCEKS
● PKCS#12

Bouncy Castle

● BKS
● UBER
● BCPKCS#12
● BCFKS

Keystore Types

Oracle JRE/JDK

● JKS
● JCEKS
● PKCS#12

Bouncy Castle

● BKS
● UBER
● BCPKCS#12
● BCFKS

Keystore Types

Oracle JRE/JDK

● JKS
● JCEKS
● PKCS#12

Bouncy Castle

● BKS
● UBER
● BCPKCS#12
● BCFKS

Keystore Types

Oracle JRE/JDK

● JKS
● JCEKS
● PKCS#12

Bouncy Castle

● BKS
● UBER
● BCPKCS#12
● BCFKS

Keystore Types

Oracle JRE/JDK

● JKS
● JCEKS
● PKCS#12

Bouncy Castle

● BKS
● UBER
● BCPKCS#12
● BCFKS

ATTACKS
FLAWS

Oracle JKS Password Cracking

Key Decryption
in JKS

E = Encrypted Key

W = Keystream

W
0
 = Salt

K
i
 = E

i
 ⊕ W

i

W
i
 = SHA1(pw||W

i-1
)

CK = SHA1(pw||K)

Oracle JKS Password Cracking

Key Decryption
in JKS

E = Encrypted Key

W = Keystream

DER/ASN.1

~10
0X

spe
edu

p

W
0
 = Salt

K
i
 = E

i
 ⊕ W

i

W
i
 = SHA1(pw||W

i-1
)

CK = SHA1(pw||K)

Oracle JKS Password Cracking

Key Decryption
in JKS

E = Encrypted Key

W = Keystream

DER/ASN.1

~10
0X

spe
edu

p

W
0
 = Salt

K
i
 = E

i
 ⊕ W

i

W
i
 = SHA1(pw||W

i-1
)

CK = SHA1(pw||K)

8 billions pw/s
with one NVIDIA

GTX 1080

Oracle JKS/JCEKS Integrity Password Cracking

SHA1(...)

Oracle JKS/JCEKS Integrity Password Cracking

SHA1(...) SHA1(***** || ||)

“Mighty Aphrodite”

Keystore
content

Integrity
password

Oracle JKS/JCEKS Integrity Password Cracking

SHA1(...) SHA1(***** || ||)

● Efficient integrity-password bruteforce (better w. rainbow-tables Ú)
● Length extension attacks?
● Watch out when integrity password = confidentiality password!

“Mighty Aphrodite”

Keystore
content

Integrity
password

Oracle JKS/JCEKS Integrity Password Cracking

SHA1(...) SHA1(***** || ||)

● Efficient integrity-password bruteforce (better w. rainbow-tables Ú)
● Length extension attacks?
● Watch out when integrity password = confidentiality password!

“Mighty Aphrodite”

Keystore
content

Integrity
password

DoS by Integrity Parameters Abuse

● Oracle PKCS12
● Bouncy Castle BKS
● Bouncy Castle PKCS12

KDF+HMAC

DoS by Integrity Parameters Abuse

● Oracle PKCS12
● Bouncy Castle BKS
● Bouncy Castle PKCS12

Parameters

ASN.1 Structure

KDF+HMAC

…
SEQUENCE (3 elem)

 SEQUENCE (2 elem)

 SEQUENCE (2 elem)

 OBJECT IDENTIFIER 1.3.14.3.2.26 sha1 (OIW)

 NULL

 OCTET STRING (20 byte) C9C2AF5A...

 OCTET STRING (20 byte) 7B223BBC...

 INTEGER 1024

DoS by Integrity Parameters Abuse

● Oracle PKCS12
● Bouncy Castle BKS
● Bouncy Castle PKCS12

Parameters

ASN.1 Structure

KDF+HMAC

…
SEQUENCE (3 elem)

 SEQUENCE (2 elem)

 SEQUENCE (2 elem)

 OBJECT IDENTIFIER 1.3.14.3.2.26 sha1 (OIW)

 NULL

 OCTET STRING (20 byte) C9C2AF5A...

 OCTET STRING (20 byte) 7B223BBC...

 INTEGER 1024

Iteration Count = 2 31–1

DoS the application

loading the keystore!

JCEKS Secret Keys Code Exec

JCEKS Secret Keys Code Exec

SecretKey

SealedObject

JCEKS Secret Keys Code Exec

SecretKey

SealedObject

JCEKS Secret Keys Code Exec

SecretKey

SealedObject

JCEKS Secret Keys Code Exec

SecretKey

KeyStore Load Mechanism

● deserialize each SealedObject
● then perform Integrity Check

SealedObject

JCEKS Secret Keys Code Exec

SecretKey

KeyStore Load Mechanism

● deserialize each SealedObject
● then perform Integrity Check

SealedObject

JCEKS Secret Keys Code Exec

SecretKey

KeyStore Load Mechanism

● deserialize each SealedObject
● then perform Integrity Check

● Command execution
JDK≤1.7.21 & JDK≤1.8.20

● DoS JDK>1.8.20
● Fixed Oct 2017 CPU

SealedObject

JCEKS Secret Keys Code Exec after Decrypt

SecretKey

SealedObject

JCEKS Secret Keys Code Exec after Decrypt

Deserialize of SecretKey

● Extended classpath
● Use gadgets from any 3rd-party library

SealedObject

JCEKS Secret Keys Code Exec after Decrypt

Deserialize of SecretKey

● Extended classpath
● Use gadgets from any 3rd-party library

Command execution on
latest JDK if integrity &
key password are known!

SealedObject

JCEKS Secret Keys Code Exec after Decrypt

SecretKey

Deserialize of SecretKey

● Extended classpath
● Use gadgets from any 3rd-party library

Command execution on
latest JDK if integrity &
key password are known!

JCEKS
Rebrand

Java Code
Execution
KeyStore

DISCLOSURE
CONTRIBUTIONS

Disclosure Timeline

May 2017
Report to Oracle
and BC

Apr 2017
Discovered code
execution
at RuCTF finals

… 2017
Keystore
Analysis

Jul 2017
Issues fixed by
Oracle

Aug 2017
BC1.58 released
fixing some issues

Oct 2017
Oracle CPU
CVE-2017-10345,
CVE-2017-10356

Nov 2017
JCEKS code exec,
again...

TODAY
Full disclosure
@NDSS18

Responses

● Oracle Keytool, warning on JKS/JCEKS
○ The JCEKS keystore uses a proprietary format. It is recommended to

migrate to PKCS12 which is an industry standard format [...]

● Oracle JCEKS KDF params for PBE
○ from 20 to 200K iterations (max 5M)

● Oracle PKCS12
○ from 1024 to 50K iterations for PBE (max 5M)
○ from 1024 to 100K iterations for HMAC (max 5M)

● Partial fix to the Oracle JCEKS code execution

● Similar improvements in Bouncy Castle

Responses

● Oracle Keytool, warning on JKS/JCEKS
○ The JCEKS keystore uses a proprietary format. It is recommended to

migrate to PKCS12 which is an industry standard format [...]

● Oracle JCEKS KDF params for PBE
○ from 20 to 200K iterations (max 5M)

● Oracle PKCS12
○ from 1024 to 50K iterations for PBE (max 5M)
○ from 1024 to 100K iterations for HMAC (max 5M)

● Partial fix to the Oracle JCEKS code execution

● Similar improvements in Bouncy Castle

CVE-2017-10356
CVSS 6.2

CVE-2017-10345
CVSS 3.1

Contributions

● Threat model for password-protected keystores, design rules for
secure keystores

● Analysis of 7 keystores
○ Cryptographic implementation
○ Weaknesses & Attacks

● Brute force time comparison for key confidentiality and integrity
passwords

● Concrete improvements to the security of Oracle JDK and Bouncy
Castle keystores

THANK YOU!
(´ ▽ `)ﾉ

???Q??????????U????????????E?????
??????S???T???????????????I??????
?O???????????????N???????????S???

squarcina@unive.it

@blueminimal

https://www.linkedin.com/in/squarcina/

